Deep earthing system with copper electrodes

- corrosion-resistant
- flexible
- cost-effective
Deep earthing system • The system of your choice

The earthing electrode
Special copper cable 50mm², stranded plain, with single wire Ø 3mm

The driving pipe assembly
Tip of the driving head made of hardened steel, guide pipe and extension pipe made of steel

Two strength categories

- Ø 17mm (Standard)
- Ø 21mm (Reinforced)

The shaft / adaptor set
Insert for mechanical driving

The impact head
Impact head for manual driving

The principle
The technical and economic advantage of this deep earthing system is that the driving pipe assembly (made of steel) and the earthing electrode (made of copper) are separate. This enables the deep earthing system to meet every conceivable requirement; it conforms to the standards and can also be used in any driving direction without risk of breakage.

Copper electrodes offer these benefits
- total resistance against corrosion, ensuring uniform earth contact resistance throughout the entire lifetime of the installation
- optimal electrical conductivity and mechanical strength
- continuous electrode to connection points
- allows connection to other earthing systems (such as foundation earthing)

The driving pipe assembly offers these benefits
- choice of two pipe assemblies: standard (Ø 17 mm) and reinforced (Ø 21 mm). The soil quality and the driving tool are the deciding factors when making your choice
- the pipe assembly can be extended as required
- fast, easy driving is possible with all commonly used chisel hammers, and also manually
- working height is always ideal (10 – 110cm above the ground)
- the last extension pipe can be withdrawn and used again
- the steel pipe assembly has a protective effect as a sacrificial anode
The deep earthing system connection with copper electrode can be used as …

… a single earth
Structures such as masts, antennas, chimneys, towers, transformer stations and electrical housings, etc. call for high-performance earthing that meets the requirements for electrical engineering and lightning protection technology. The deep earthing system is ideal for this purpose, as well as for subsequently installation for existing small houses.

… an additional or replacement earth
The deep earthing system can easily complement or replace inadequate earth connections such as water pipes (old ones made of cast iron or new ones made of plastic), old and corroded earthing on existing structures or concrete earth connections that are too small.

… a compensating earth connection
The deep earthing system with the copper electrode is ideal for compensating missing sections of copper earthing rings in line with the lightning protection standard SEV SN 4022:2004 (earthing ring length to be compensated divided by two = total length of deep earthing system electrode).

Measure the earth wire contact resistance!
Target value ≤ 10 Ohm. This allows you to decide when driving should be finished, or when to connect a second deep earthing electrode in parallel – so you can cut your expenditure of time and materials.

Parallel connection halves the earth wire contact resistance
Connecting several deep earthing electrodes in parallel will reduce the earth wire contact resistance by factor k, as shown in the table. Distance a ≥ 1.5 x electrode length must be kept to the minimum. For this reason, it is generally more cost-effective to use several electrodes in parallel instead of one long one.
The electrode length must always be at least 2.5m.

<table>
<thead>
<tr>
<th>Number of parallel electrodes</th>
<th>Factor k</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>0.40</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>0.13</td>
</tr>
</tbody>
</table>
What basic factors determine the earth contact resistance?
The quality of the ground (or the specific resistance of the soil), the soil moisture and its temperature are the key defining factors for the earth contact resistance that can be attained. Below a depth of 70cm, the temperature and moisture values are relatively constant. It follows that a soil with a low specific resistance (such as humus or loam) is decisive.

Copper cable as an earthing electrode
The special 50mm² copper cable (single wire Ø 3mm) ideally satisfies every conceivable requirement for an earthing electrode. As a material, copper is resistant to corrosion and it has optimal electrical properties. The flexible cable also has the strength needed to withstand high mechanical loads without any damage.

Corrosion in the ground and in connection with other earthing systems
Moist soil acts as an excellent electrolyte, which means that it encourages severe corrosion of metal systems that are laid underground. As a noble metal, copper is resistant to this corrosion. Plain, galvanized or copper-plated iron components corrode and decompose. This is why various standards specify that only plain copper may be used for earth connections laid underground (earthing rings, deep earth connections and radiation-type earth connections). A copper earth is also electrochemically neutral, as opposed to a foundation earth (steel in concrete).

As a result, no harmful corrosion can occur with this frequent combination of earthing systems.

How an deep earthing system electrode influences the step voltage
The greater the depth at which an earthing electrode is buried, the lower the step voltage will be on surface. This is the reason why deep earthing systems have such optimal characteristics.

Specific resistance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Humus</td>
<td>approx. 50 Ωm</td>
</tr>
<tr>
<td>Loam</td>
<td>approx. 50 Ωm</td>
</tr>
<tr>
<td>Sand</td>
<td>approx. 100 Ωm</td>
</tr>
<tr>
<td>Gravel</td>
<td>approx. 160 Ωm</td>
</tr>
<tr>
<td>Moraine</td>
<td>approx. 1000 Ωm</td>
</tr>
</tbody>
</table>
1. Did you make sure that there are no electrical cables, pipe systems or underground structures in the area where you want to drive in the deep earthing system?

2. Choose the correct driving pipe assembly

<table>
<thead>
<tr>
<th>Soil quality</th>
<th>Driving tool</th>
<th>Thickness of driving pipe assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>normally grown, filled / back-filled</td>
<td>normal commercial chisel hammer</td>
<td>Ø 17mm</td>
</tr>
<tr>
<td>hard, stony</td>
<td>normal commercial chisel hammer</td>
<td>Ø 17mm or Ø 21mm</td>
</tr>
<tr>
<td>hard, stony, compacted</td>
<td>heavy chisel or percussion hammer</td>
<td>Ø 21mm</td>
</tr>
</tbody>
</table>

3. First, push the special copper cable, 50mm² (electrode) fully into the driving head and place it against the mouth.

4. Then, push the guide pipe with the notch against the copper cable into the driving head. Drive the guide pipe into the head with a hammer stroke so as to clamp the cable properly.

5. Position the guide pipe with the head and copper cable (electrode) at the location you want. Position the chisel hammer with the correct hammer insert, align it with the guide pipe, and drive it in.

6. Position the extension pipe and drive in a minimal electrode length of 2.5m. **Make sure that the copper cable (electrode) is carried along and drawn in without obstruction.**

7. Measure the earth contact resistance on the copper cable (electrode). You should aim for a value of ≤ 10 Ohm. (You must remove the chisel hammer from the pipe assembly to measure!)

8. Decide whether the same earth electrode should be driven in further, or whether a second earth electrode at the required minimum distance (1.5 x electrode length) would be better.

9. Withdraw the last extension pipe with the extraction tool and use it for the next deep earth connection.

10. An earthing measurement record should be compiled for each object. The electrode length and its earth wire circuit resistance should be recorded for each deep earth.
Deep earthing system • The components

<table>
<thead>
<tr>
<th>Article</th>
<th>Description</th>
<th>Article number</th>
<th>Selling unit</th>
<th>Type</th>
<th>E-number</th>
</tr>
</thead>
</table>
| **Copper earthing electrode** | Special stranded plain copper cable, 50mm², single wire Ø 3mm
(20kg = approx. 44m / 1kg = approx. 2.2m) | 265.017.552 | 20 kg | LR3 | 156 990 620 |
| **Driving head** | made of plain hardened steel,
a) standard version Ø 17mm
b) reinforced version Ø 21mm | 261.002.020 261.034.000 | 5 5 | TE1 TE1 | 156 980 100 156 980 110 |
| **Guide pipe** | made of plain mild steel, length 100cm
a) standard version Ø 17mm
b) reinforced version Ø 21mm | 261.003.513 261.035.000 | 5 5 | TE2 TE1 | 156 980 000 156 980 020 |
| **Extension pipe** | made of plain mild steel, length 100cm
a) standard version Ø 17mm
b) reinforced version Ø 21mm | 261.004.021 261.012.069 | 5 5 | TE3 TE3 | 156 980 010 156 980 030 |
| **Shaft / Adaptor Set** | for mechanical driving with a chisel hammer
a) for standard version Ø 17mm
Shaft SDS-max adaptor incl.
Shaft Hilti TE-S adaptor incl.
b) for reinforced version Ø 21mm
Shaft Hilti TE-S adaptor incl.
Shaft SDS-max adaptor incl.
Shaft Bosch 1 1/8" hexagone, adaptor incl. | 261.040.000 261.041.000 261.044.000 261.043.000 261.045.000 | 1 1 1 1 1 | TE9 TE9 TE9 TE9 TE9 | 156 981 000 156 981 100 156 981 110 156 981 010 156 981 210 |
| **Adaptor** | fits to all shaft / adaptor sets as supplement
a) for standard version Ø 17mm
b) for reinforced version Ø 21mm | 261.038.000 261.039.000 | 1 1 | TE9 TE9 | 156 989 000 156 989 010 |
| **Impact head** | for manual driving
a) for standard version Ø 17mm
b) for reinforced version Ø 21mm | 261.036.000 261.037.000 | 1 1 | TE63 TE63 | 156 988 000 156 988 010 |
| **Extraction tool** | Tool to withdraw the last extension pipe | 261.016.000 | 1 | TE41 | 156 980 930 |
| **Hand-held cable cutter, mechanical** | For Cu/Al conductors up to 120 mm²
Weight 650g, length 370mm | 413.080.415 | 1 | ZU5 | 983 043 069 |
| **Earthing measurement instrument set** | Measuring instrument and accessories to measure the earth contact resistance | 429.002.000 | 1 | ZU1 | 980 800 109 |
| **Earth wire clamp** | for stranded and solid copper wire
bolts: Inox M8x35
for wires Ø 6–8 mm and cable 50mm² | 275.027.114 | 25 | AV6 | 156 001 090 |