WITT CM 7 – Cable Monitoring

Monitor - locate - report

Example structure base 8 with up to 3000 VDC peak a WB-HS M and 8 WB-CM7 components for monitoring up to 8 return cables

Application

Detection of damage to return cabel (e.g. RHEYRAIL cables), protection against theft and detection of manipulations for the purpose of cable theft.

Description

Changes to the cable, as well as those affecting the monitoring wires, are identified, and reported immediately. In the event of a fault, localization can alternatively occur by measuring the resistance or the capacitance. The following changes to the cable cause an alarm:

Cable shortening without short circuit between monitoring wire and inner conductor leads to a smaller capacitance between monitoring wire and inner conductor, so that the resulting distance is determined and displayed by using a stored reference value.

Cable shortening with short circuit between monitoring wire and inner conductor leads to a smaller resistance of the monitoring wire, so that the resulting distance is determined and displayed by using a predetermined reference value.

Bridging a monitoring wire.

Penetration of liquids into the cable.

WTT

The cable fault monitoring devices pass on the WITT Bridge components and have a modular structure. The following modules can be configured for cable monitoring

- Measuring module WB-CM 7
- WB-HS M for the realization of the visualization, administration and communication protocols

Optional

- Modem for data transmission
- Housing incl. Appealing structures as shown in the picture.
- Power pack, heater, wiring
- The communication interface or protocol is specified when ordering (signaling contacts, LAN, WLAN, RS485, CAN, GSM, LTE). If several cables are to be connected to one device

Measurement Principle

- R... Resistance of the monitoring wire
- G... Conductance between monitoring wire and inner conductor
- C... Capacity between monitoring wire and inner conductor
- L... Cable inductance

The cable fault monitor generates a measuring current with a frequency of 1.5 kHz.

The measuring voltages V1 and V2 are proportional to R or C. They are monitored alternately and evaluated internally. If the cable is faultless, R and G can be neglected. The measuring voltage V2, which is proportional to the capacitance C, is determined individually for all monitoring wires (learning) and stored as a reference value for fault location. The reference value for fault location via the measuring voltage V1 proportional to the resistor is specified by the manufacturer.

Interfaces in the example

Auxiliary voltage:60VDC to 250AVC / 50Hz / 60Hz (max. 4
mm²)Interface to Monitoring-Program:
communications interface(optionally):USB
LAN, WLAN, RS485, CAN, GSM, LTE
(max. 1.5 mm²)Connection for inner conductor:(max. 1.5 mm²)

Cable connection:

- Up to four monitoring wires can be connected per WB-CM7.
- At least one monitoring wire must be connected
- The potential of the module is that of the connected cable

Messages

WB-CM 7

LED1	Green	flashes when the device starts and lights up permanently when the device is ready for operation.
LED 2	Red	Alarm (red) - lights when cable faults are detected.

Modules

- **Base unit 2M** incl. evaluation module and communication module (for monitoring max. 2 cables with up to 4 monitoring cores)
- **Base unit 8M** incl. evaluation module and communication module (for monitoring up to 8 cables with up to 4 monitoring wires)
- **Power supply 1kV** (isolating voltage 1kV)
- power supply 3kV (isolating voltage 3kV)
- **Measuring module 1000m** (1 cable with max. cable length of 1000m)
- Measuring module 2000m (1 cable with max. cable length of 2000m)
- Measuring module 3000m (1 cable with max. cable length of 3000m)