RIEGL Mobile Laser Scanning Railway Application

Dr. Harald Teufelsbauer Business Division Manager, MLS May 2019

Agenda

- 1. Introduction: short company presentation of RIEGL
- 2. Mobile Laser Scanning systems: system configuration and key features
- 3. Processing Software > automated data alignment
- 4. LiDAR systems in Rail: types of applications and methods
 - > large scale (MLS) > mid scale (ULS) > small scale (TLS)
- 5. Case Study 1: Data Fusion combining the advantages of different scanning methods
- 6. Case Study 2: Subway Scanning reliable surveying in GNSS denied areas
- Case Study 3: Tunnel Modeling cost reduction in construction projects based on high definition 3D models

RIEGL Laser Scanning | RAIL Application

RIEGL Mobile Mapping Systems

Mobile Laser Scanning | time line

VMX – RAIL

Triple Scanner Mobile Mapping System Specifically Designed for Rail Application

VMX-RAIL | designed for harsh conditions

In moverion in St

VMX-RAIL Key Features

- rugged measuring head for reliable longterm operation in harsh environments
- equipped with three VUX-1HA
 High Accuracy Laser Scanners
- 3 MHz pulse repetition rate and
 750 lines per second resulting in up to
 7000 pts/m² in 3m range at
 80 km/h platform speed

VMX-RAIL | key features

VMX-RAIL System Components

VMX-RAIL | modular

www.riegl.com Copyright RIEGL Laser Measurement Systems GmbH © 2018 - All rights reserved.

VMX-RAIL System Components

scan-head protection by pyramid-shaped window panes

VMX-RAIL Camera System

10 GigE High Capacity Data Transfer

- VMX-RAIL supports up to 6 cameras (5Mp, 9Mp, 12Mp)
- leading edge CMOS technology enables high resolution and high frame rates
 - equipped with a wide angle, low distortion lens (e.g. 12Mpx with 83° x 66° FOV)
 - ball-joint camera heads for v × h rotation
 - high-speed imaging up to 20 fps
- Image data traffic up to 6 Gbit/s
- Ladybug 5+ for spherical imaging

VMX-RAIL | camera system

VMX-RAIL Interfaces

VMX-RAIL Key Features

- unique crossed point cloud pattern along 360 deg of the clearance profile
- optimized scanner orientation to increase the field of view and to minimize scan shadows

improved feature extraction and small object detection

VMX Scan Pattern

Illustration of typical VMX scan pattern

- Simultaneous forward/backward looking
- Crossed scan lines in a single pass
- Crossed scanlines also on objects parallel to the trajectory
- Reduction of scan shadows caused by obstacles and traffic
- Get three sides of a structure (columns, house facades, trafic signs, ...) in one pass

VMX Scan Pattern

Illustration of typical VMX scan pattern

- Simultaneous forward/backward looking
- Crossed scan lines in a single pass
- Crossed scanlines also on objects parallel to the trajectory
- Reduction of scan shadows caused by obstacles and traffic
- Get three sides of a structure (columns, house facades, trafic signs, ...) in one pass

VMX Scan Pattern

Case Study 80km/h platform speed

pulse repetition rate = 3 Mhz
scan line density = 750 lines per second
platform speed = 80 km/h

Results @ 3 m target distance @ 80 km/h

scan line distance = 9 cm per scanner point spacing = < 5 mm per scanner TOTAL points per m² = 7000

VMX Scan Pattern

VMX-RAIL | point cloud pattern

Immovation in 3D

VMX Scan Pattern

- extraction of rail position and width
- measurement of superelevation
- calculation of 6 DOF rail axes

VMX Scan Pattern

Accuracy Evaluation

www.riegl.com Copyright RIEGL Laser Measurement Systems GmbH © 2018 – All rights reserved.

Data Analysis

Analysis of VMX-450 test dataset

- CARD/1 did a feasibility study of point cloud based railway track analysis
- Survey of the actual state of the track geometry shows deviations of superelevation to the planned state
- Gauge analysis showed 1.8 mm deviation to the planned state

Projekt SB RIEGL 2016 - CARD/1 Version 9.0 Projekt Vermessung Topografie Verkehrsweg Wasserwirtschaft Zeichnung Favoriten Einstellungen Ansicht Fenster ? + 🕀 🛃 🔯 🛛 4 🗢 🕨 🖊 🧎 ちちゃき 🚳 🖗 📰 🏋 🖀 S= 1711.22718 Z= 494,45404 itt Achen 2 Station 2000 000 (2000 000 Zeige Längsschnitt Achse 59 (1) Rand Elemen Weiche - - -Überhöhungsband Achse 59 (1) Ergebnisse aufbereitet: Max. Höhenunterschied der Schienen : -0,0531 an Station 1723,000 Mittelwert der gemessenen Spurweite: 1,4368 +/- 0,0030 Abweichung des Mittelwerts vom Soll: 0,0018 Max. Abweichung von Soll-Spurweite : -0,0089 an Station 1808,000 Sleisdatenberechnung abgeschlossen! CARD Funktion wählen SB RIEGI 2016 GK 3 Grad

VMX-RAIL | data analysis

VMX Scan Pattern

critical flat object size @ 80 km/h

80 km/h acquisition speed

line spacing 9 cm per scanner

critical flat object size of 5 cm

detection of pole and wire objects with a few mm diameter

VMX-RAIL | critical object size

VMX Scan Pattern

Point cloud acquired with 30 km/h

- achieve a very high level of detail
- capturing of very thin structures and small objects
- slow travel speed e.g. applicable in train stations

VMX Scan Pattern

Point cloud acquired with 30 km/h

- achieve a very high level of detail
- capturing of very thin structures and small objects
- slow travel speed e.g. applicable in train stations

VMX Scan Pattern

Point cloud acquired with 30 km/h

- achieve a very high level of detail
- capturing of very thin structures and small objects
- slow travel speed e.g. applicable in train stations

Track Mapping & Clearance Surveying

- enables the capture of the complete rail corridor, including
 - rail heads
 - catenary and catenary masts
 - overhead structures
 - ballast shoulders
 - signals
 - vegetation

VMX-RAIL | application

Track Mapping & Clearance Surveying

- enables the capture of the complete rail corridor, including
 - rail heads
 - catenary and catenary masts
 - overhead structures
 - ballast shoulders
 - signals
 - vegetation
- feature extraction with 3rd party software

VMX-RAIL | application

VMX-RAIL Key Features and Benefits

reduction of scan shadows by multi-scanner system design

rugged design for high durability in rough environmental conditions

optionally customized roof mount for perfect integration with rail cars

optimized on-site maintenance capabilities by modular measuring head setup

rapid and safe data capture with minimal disruption to network schedules

remote sensing avoids surveying staff to be exposed to any risks on railway tracks

RiPRECISION

www.riegl.com Copyright RIEGL Laser Measurement Systems GmbH © 2018 – All rights reserved.

RiPRECISION

How does RIEGL deal with scan data misalignment?

- even high-performance INS/GNSS is facing challenges in multipath environments and GNSS outage
- => trajectories have time-varying errors in all 6 DOF

RiPRECISION

- takes external control (ground control points) and auto-detected features into account
- automated adjustment strategy enables efficient point cloud alignment
- fully embedded in *RIEGL's* kinematic data processing software

RiPRECISION | rigorous scan data alignment

RiPRECISION

the SNCF Réseau approach as case study of utmost efficiency merging data acquired by different laser scanning disciplines

Immovation in 3D

SNCF Réseau: VMX-450 and VMX-2HA

- SNCF Réseau started MLS in 2013 with the first RIEGL VMX-450 on rail
- 30.000 km scanned since 2013
- the system is used on a project basis
- => no permanent operation of the system

Immovation in 3D

SNCF Réseau: VMX-450 and VMX-2HA

- not used for periodic monitoring of the rail network
- local acquisition of high resolution surveys to increase level of detail compared to conventional point to point surveying
- recently SNCF Réseau is using also the VMX-2HA for project based surveys

VMX | Application

SNCF Réseau: VMX-RAIL

- SNCF Réseau is the first user of RIEGL's
 VMX-RAIL triple scanner system
- the goal: periodic monitoring of the rail network two times a year
- three trains are equipped with the VMX-RAIL
- permanent operation with planned system maintaining intervalls
- target for 2020: monitoring of 200.000 km per year

VMX | Application

the SNCF Réseau approach as case study of utmost efficiency merging data acquired by different laser scanning disciplines

Immovation in 3D

RiCOPTER – Key facts

- Fully integrated turnkey solution
 - Octocopter
 - Foldable carrier arms
 - MTOM: <25 kg
 - max. 16 kg payload
 (batteries + sensor load)
 - up to 30 minutes endurance
 - Optimized for operation with *RIEGL* VUX-SYS

Motivation for UAV

Mobile Laser Scanning

advantages

- ✓ scanning of several 100 km per day
- ✓ high details of corridor infrastructure
- ✓ system position and field of view optimized for
 - clearance analysis
 - asset detection

challenges

- ✓ objects and togography far away from the rail track can not be captured
- ✓ acquisition times need to be scheduled long time in advance

Unmanned Laser Scanning

advantages

- ✓ quick deployment
- ✓ flexibility of vantage point
 - possibility to scan rail infrastructure and
 - surrounding area
 - roof tops
 - facades

challenges

- ✓ limited operation time / limited area performance
- ✓ flight permission limitations

MLS and ULS | a perfect data complement

Motivation for UAV

Project Overview

Precision and accuracy

Mobile LiDAR mounted on a rail car vs. UAV LiDAR

- Point density rail head
 - UAV: 1 meter track length => More than 30 points @ 30 km/h
 - MLS: 1 meter track length => more than 600 points @ 75 km/h
- Points per m2
 - UAV: 200 pts @ 50 m flight altitude @ 30km/h
 - MLS: 4000 pts @ 75 km/h in 6 meter range
- Point cloud geometry
 - UAV LiDAR perfectly fitting with Mobile LiDAR point cloud

MLS and ULS | a perfect data complement

offset before alignment

UAV Sample Data

- some impressions of rail infrastructure captured by UAV based scanning
- MLS: high level of detail on rail track
- ULS: complete surrounding assets

MLS: high resolution rail trackMLS: GNSS denied acquisition in the tunnelULS: rail track + surrounding topography

UAV Sample Data

- some impressions of rail infrastructure captured by UAV based scanning
- MLS: high level of detail on rail track
- ULS: complete surrounding assets

ALTAMETRIS - SNCF Réseau

detailed cross sections documentation and investigation of Natural Hazards planning of hazard prevention measures

UAV Sample Data

- some impressions of rail infrastructure captured by UAV based scanning
- MLS: high level of detail on rail track
- ULS: complete surrounding assets

ULS: asset management of transformer stations and corridor mappingMLS: inspection of infrastructure along the rail track with high speed over long distances

UAV Sample Data

- some impressions of rail infrastructure captured by UAV based scanning
- MLS: high level of detail on rail track
- ULS: complete surrounding assets

MLS: get structures from upward looking view get dense rail and catenary measurementsULS: get overpasses and bridges from top view get surronding buildings and assets

MLS and ULS | a perfect data complement

ALTAMETRIS - SNCF Réseau

the SNCF Réseau approach as case study of utmost efficiency merging data acquired by different laser scanning disciplines

Motivation for UAV

Mobile Laser Scanning

advantages

- ✓ scanning of several 100 km per day
- ✓ high details of corridor infrastructure
- ✓ system position and field of view optimized for
 - clearance analysis
 - asset detection

challenges

- ✓ objects and togography far away from the rail track can not be captured
- ✓ acquisition times needs to be scheduled long time in advance

Terrestrial Laser Scanning 🞄

advantages

- ✓ ultra high resolution
- ✓ automated registration of multiple scan positions
- ✓ very high accuracy
- ✓ absolute accuracy is not affected by trajectory
- ✓ quick deployment
- ✓ very efficient for small, complex areas e.g. railway stations, platforms, railway crossings

challenges

- ✓ safety measures for operator
- when operting on danger areas, etc...
- ✓ not suited for wide area track mapping

SNCF: TLS use in rail application

- SNCF Réseau uses TLS as complement to MLS
- VZ-400i (1000 m range) is used for small scale projects
 - train stations
 - building sites

• efficiency with VZ-400i **5-times** higher compared to traditional methods

TLS sample data of switch

high resolution TLS capture of switch and surronding infrastructure

Customer Project: Temporary GNSS Denied Area Scanning of Subway Lines via Rail Cars

gyula.fekete@budapestkozut.hu Company: Budapest Közút Zrt.

Customer Projects

www.riegl.com Copyright RIEGL Laser Measurement Systems GmbH © 2018 - All rights reserved

Project Requirements

- scanning of new dead-end Metro Line M4 in Budapest > 7.5 km length
- availability of GNSS for initial and final static and dynamic alignment
- 45 minutes data acquisition in GNSS denied subway area

movation in 3L

Project Requirements

- data acquisition can be performed only in night shifts
- limited time window of 6 hours to acquire the full dataset
- very dense GCP spacing available (25 meter) for evaluation

Accuracy Evaluation

 final accuracy after PosFix + RiPRECISION 100 m GCP spacing

Minimum distance	0.004 m
Maximum distance	0.187 m
Average	0.047 m
RMSE	0.037 m

final accuracy after PosFix + RiPRECISION
 25 m GCP spacing

Minimum distance	0 m
Maximum distance	0.05 m
Average	0.013 m
RMSE	0.007 m

Metro Budapest

- high relative accuracy enables precise
 - measuring of cross section dimensions
 - clearance analysis
 - detection of objects and inventory assets

Customer Project: MASER Consulting, P.A.

Underground Tunnel Mapping

Customer Projects

Clay Wygant, PLS cwygant@maserconsulting.com 505-228-3154

www.riegl.com Copyright RIEGL Laser Measurement Systems GmbH © 2018 – All rights reserved.

The Mission

The Goal

- Acquisition of LiDAR as-built for 160 km of tunnel
- Develop cable length for leaky coax communication

The Challenge

 Metro scan in GNSS denied environment

The Challenges

Data collection

- collect LiDAR for long segments of tunnel with limited to no GPS coverage
- adjust the collected LiDAR and imagery to a variety of design datums
- maintain 0.3m of absolute geodetic accuracy

Immovation in 3D

Project Output

Produce Deliverables

- cloud-based delivery of system-wide LiDAR
- to support the development of a new communications system (cellular & system)
- check clearances of design location of new leaky coax cables
- optimized planning of new cabling

Project Output

Produce Deliverables

- use ground control for data adjustment
- extract track geometry from point cloud
- accuracy verification by independent authority based on hard survey
- output the LiDAR & Imagery to the cloud
- lay in cable in 3D space and check clearances

Project Output

- optimization of cable length could be proven in a feasibility study
- reduction of 4000m cable length in the small test area
- high potential for optimizing cabling costs in the full metro network
- reduction of construction costs by using LiDAR technology for planning

Thank you for your kind attention!

Innovation in 3D

Copyright REGL Laser Measurement Systems GmbH © 2018 – All rights reserved. Use of this presentation other than for personal purposes requires REGL's written consent. The presentation is compiled with care. However, errors cannot be fully excluded and alternations might be necessary